

TREE DATA STRUCTURES

TREES DATA STRUCTURES
 Tree

 Nodes

 Each node can have 0 or more children

 A node can have at most one parent

 Binary tree

 Tree with 0–2 children per node

Tree Binary Tree

TREES
 Terminology

 Root  no parent

 Leaf  no child

 Interior  non-leaf

 Height  distance from root to leaf

Root node

Leaf nodes

Interior nodes Height

BINARY SEARCH TREES

 Key property

 Value at node

 Smaller values in left subtree

 Larger values in right subtree

 Example

 X > Y

 X < Z

Y

X

Z

BINARY SEARCH TREES
 Examples

Binary

search trees

Not a binary

search tree

5

10

30

2 25 45

5

10

45

2 25 30

5

10

30

2

25

45

BINARY TREE IMPLEMENTATION

Class Node {

 int data; // Could be int, a class, etc

 Node *left, *right; // null if empty

 void insert (int data) { … }

 void delete (int data) { … }

 Node *find (int data) { … }

 …

}

ITERATIVE SEARCH OF BINARY TREE
Node *Find(Node *n, int key) {

 while (n != NULL) {

 if (n->data == key) // Found it

 return n;

 if (n->data > key) // In left subtree

 n = n->left;

 else // In right subtree

 n = n->right;

 }

 return null;

}

Node * n = Find(root, 5);

RECURSIVE SEARCH OF BINARY TREE

Node *Find(Node *n, int key) {

 if (n == NULL) // Not found

 return(n);

 else if (n->data == key) // Found it

 return(n);

 else if (n->data > key) // In left subtree

 return Find(n->left, key);

 else // In right subtree

 return Find(n->right, key);

}

Node * n = Find(root, 5);

EXAMPLE BINARY SEARCHES
 Find (root, 2)

5

10

30

2 25 45

5

10

30

2

25

45

10 > 2, left

5 > 2, left

2 = 2, found

5 > 2, left

2 = 2, found

root

EXAMPLE BINARY SEARCHES
 Find (root, 25)

5

10

30

2 25 45

5

10

30

2

25

45

10 < 25, right

30 > 25, left

25 = 25, found

5 < 25, right

45 > 25, left

30 > 25, left

10 < 25, right

25 = 25, found

TYPES OF BINARY TREES
Degenerate – only one child

Complete – always two children

Balanced – “mostly” two children

 more formal definitions exist, above are intuitive ideas

Degenerate

binary tree

Balanced

binary tree

Complete

binary tree

BINARY TREES PROPERTIES
Degenerate

 Height = O(n) for n

nodes

 Similar to linked list

Balanced

 Height = O(log(n))

for n nodes

 Useful for searches

Degenerate

binary tree

Balanced

binary tree

BINARY SEARCH PROPERTIES

 Time of search

 Proportional to height of tree

 Balanced binary tree

 O(log(n)) time

 Degenerate tree

 O(n) time

 Like searching linked list / unsorted array

BINARY SEARCH TREE CONSTRUCTION

 How to build & maintain binary trees?

 Insertion

 Deletion

 Maintain key property (invariant)

 Smaller values in left subtree

 Larger values in right subtree

BINARY SEARCH TREE – INSERTION

 Algorithm

1. Perform search for value X

2. Search will end at node Y (if X not in tree)

3. If X < Y, insert new leaf X as new left subtree for Y

4. If X > Y, insert new leaf X as new right subtree for Y

 Observations

 O(log(n)) operation for balanced tree

 Insertions may unbalance tree

EXAMPLE INSERTION

 Insert (20)

5

10

30

2 25 45

10 < 20, right

30 > 20, left

25 > 20, left

Insert 20 on left

20

BINARY SEARCH TREE – DELETION

 Algorithm

1. Perform search for value X

2. If X is a leaf, delete X

3. Else // must delete internal node
a) Replace with largest value Y on left subtree

 OR smallest value Z on right subtree

b) Delete replacement value (Y or Z) from subtree

Observation

 O(log(n)) operation for balanced tree

 Deletions may unbalance tree

EXAMPLE DELETION (LEAF)

 Delete (25)

5

10

30

2 25 45

10 < 25, right

30 > 25, left

25 = 25, delete

5

10

30

2 45

EXAMPLE DELETION (INTERNAL NODE)

 Delete (10)

5

10

30

2 25 45

5

5

30

2 25 45

2

5

30

2 25 45

Replacing 10

with largest

value in left

subtree

Replacing 5

with largest

value in left

subtree

Deleting leaf

EXAMPLE DELETION (INTERNAL NODE)

 Delete (10)

5

10

30

2 25 45

5

25

30

2 25 45

5

25

30

2 45

Replacing 10

with smallest

value in right

subtree

Deleting leaf Resulting tree

BALANCED SEARCH TREES

 Kinds of balanced binary search trees
 height balanced vs. weight balanced

 “Tree rotations” used to maintain balance on
insert/delete

Non-binary search trees
 2/3 trees

 each internal node has 2 or 3 children

 all leaves at same depth (height balanced)

 B-trees

Generalization of 2/3 trees

Each internal node has between k/2 and k children

 Each node has an array of pointers to children

Widely used in databases

OTHER (NON-SEARCH) TREES

 Parse trees

 Convert from textual representation to tree
representation

 Textual program to tree
 Used extensively in compilers

 Tree representation of data
 E.g. HTML data can be represented as a tree

 called DOM (Document Object Model) tree

 XML

 Like HTML, but used to represent data

 Tree structured

PARSE TREES
 Expressions, programs, etc can be represented by tree

structures

 E.g. Arithmetic Expression Tree

 A-(C/5 * 2) + (D*5 % 4)

 +
 - %

A * * 4

 / 2 D 5

 C 5

TREE TRAVERSAL

 Goal: visit every node of a tree

 in-order traversal

void Node::inOrder () {
 if (left != NULL) {
 cout << “(“; left->inOrder(); cout << “)”;
 }
 cout << data << endl;
 if (right != NULL) right->inOrder()
} Output: A – C / 5 * 2 + D * 5 % 4

To disambiguate: print brackets

 +
 - %

A * * 4

 / 2 D 5

 C 5

TREE TRAVERSAL (CONTD.)

 pre-order and post-order:

void Node::preOrder () {
 cout << data << endl;
 if (left != NULL) left->preOrder ();
 if (right != NULL) right->preOrder ();
}

void Node::postOrder () {
 if (left != NULL) left->preOrder ();
 if (right != NULL) right->preOrder ();
 cout << data << endl;
}

Output: + - A * / C 5 2 % * D 5 4

Output: A C 5 / 2 * - D 5 * 4 % +

 +
 - %

A * * 4

 / 2 D 5

 C 5

XML
Data Representation

 E.g.

 <dependency>

 <object>sample1.o</object>

 <depends>sample1.cpp</depends>

 <depends>sample1.h</depends>

 <rule>g++ -c sample1.cpp</rule>

 </dependency>

 Tree representation

dependency

object depends

sample1.o sample1.cpp

depends

sample1.h

rule

g++ -c …

GRAPH DATA STRUCTURES
 E.g: Airline networks, road networks, electrical circuits

 Nodes and Edges

 E.g. representation: class Node
 Stores name

 stores pointers to all adjacent nodes

 i,e. edge == pointer

 To store multiple pointers: use array or linked list

Ahm’bad

Delhi

Mumbai

Calcutta

Chennai
Madurai

END OF CHAPTER

