‘ TREE DATA STRUCTURES
(0

TREES DATA STRUCTURES
o Tree

» Nodes
» Each node can have 0 or more children
» A node can have at most one parent

o Binary tree
» Tree with 0-2 children per node

Tree Binary Tree

TREES

Terminology
Root — no parent
Leaf = no child
Interior = non-leaf
Height = distance from root to leaf

Root node

Interior nodes

Leaf nodes

> Height

BINARY SEARCH TREES

Key property

Value at node
Smaller values in left subtree
Larger values in right subtree

Example
X>Y
X<Z

(I?EIARY SEARCH TREES

xamples

Binary
search trees

Not a binary

search tree ‘

BINARY TREE IMPLEMENTATION

Class Node {
int data; // Could be int, a class, etc
Node *left, *right; /[null iIf empty

void insert (intdata) { ... }
void delete (intdata){ ... }
Node *find (intdata) {...}

ITERATIVE SEARCH OF BINARY TREE

Node *Find(Node *n, int key) {
while (n '= NULL) {
If (n->data == key) // Found it
return n;
If (n->data > key) // In left subtree
n = n->left;
else // In right subtree
n = n->right;
}

return null;

}
Node * n = Find(root, 5);

RECURSIVE SEARCH OF BINARY TREE
Node *Find(Node *n, int key) {

If (n == NULL) // Not found
return(n);

else if (n->data == key) // Found it
return(n);

else if (n->data > key) // In left subtree
return Find(n->left, key);

else // In right subtree
return Find(n->right, key);

}
Node * n = Find(root, 5);

EXAMPLE BINARY SEARCHES
o Find (root, 2)

~

root

@ 10 > 2, left e 5> 2, left
e @ 5> 2, left a @ 2 =2, found

2 =2, found
(2) (5) (a5 (30)
(10
© @

EXAMPLE BINARY SEARCHES
Find (root, 25)

@ 10 < 25, right 6 5 < 25, right
(5) (30) 30>251eft (2) (45) 45> 25, left

~ 25 = 25, found @ 30 > 25, |eft

@ @ @ 10 < 25, right
@ 25 = 25 found

TYPES OF BINARY TREES
Degenerate — only one child

Complete — always two children

Balanced — “mostly” two children
more formal definitions exist, above are intuitive ideas

O

Degenerate Balanced Complete
binary tree binary tree binary tree

BINARY TREES PROPERTIES

Degenerate Balanced
Height = O(n) for n Height = O('log(n))
nodes for n nodes
Similar to linked list Useful for searches

O

Degenerate Balanced
binary tree binary tree

BINARY SEARCH PROPERTIES

Time of search
Proportional to height of tree
Balanced binary tree
o O(log(n)) time
Degenerate tree
o O(n)time
o Like searching linked list / unsorted array

BINARY SEARCH TREE CONSTRUCTION

How to build & maintain binary trees?
Insertion
Deletion

Maintain key property (invariant)
Smaller values in left subtree
Larger values in right subtree

BINARY SEARCH TREE — INSERTION

Algorithm
Perform search for value X
Search will end at node Y (if X not in tree)
If X <Y, insert new leaf X as new left subtree for Y
If X >, insert new leaf X as new right subtree for Y

Observations
O(log(n)) operation for balanced tree
Insertions may unbalance tree

EXAMPLE INSERTION

o Insert (20)

10 < 20, right
30 > 20, left
25 > 20, left

Insert 20 on left

BINARY SEARCH TREE — DELETION

Algorithm
Perform search for value X
If X is a leaf, delete X

Else /I must delete internal node

a) Replace with largest value Y on left subtree
OR smallest value Z on right subtree

b) Delete replacement value (Y or Z) from subtree

e Observation

O(log(n)) operation for balanced tree
Deletions may unbalance tree

EXAMPLE DELETION (LEAF)

o Delete (25)

@ 10 < 25, right @
(5) (30) 30>250et —3 (5) (30)
25 = 25, delete
(2) (@) (s (2) (4

EXAMPLE DELETION (INTERNAL NODE)

Delete (10)

Replacing 10 Replacing 5
with largest with largest
value in left value in left

subtree Subtree

Deleting leaf

EXAMPLE DELETION (INTERNAL NODE)

o Delete (10)

S oS

Replacing 10 Deleting leaf Resulting tree
with smallest

value in right ‘
subtree

BALANCED SEARCH TREES

Kinds of balanced binary search trees
height balanced vs. weight balanced

“Tree rotations” used to maintain balance on
Insert/delete

Non-binary search trees

2/3 trees
each internal node has 2 or 3 children
all leaves at same depth (height balanced)

B-trees
Generalization of 2/3 trees

Each internal node has between k/2 and k children
Each node has an array of pointers to children

Widely used in databases

OTHER (NON-SEARCH) TREES

Parse trees

Convert from textual representation to tree
representation

Textual program to tree
Used extensively in compilers

Tree representation of data
E.g. HTML data can be represented as a tree
called DOM (Document Object Model) tree

XML
Like HTML, but used to represent data
Tree structured

PARSE TREES
EXxpressions, programs, etc can be represented by tree

structures
E.g. Arithmetic Expression Tree
A-(C/5 * 2) + (D*5 % 4)

_/"‘\0/
/\ /\

A X * 4
VANEERWAN
/ 2 D 5
/\

C 5

/+\0
TREE TRAVERSAL / \ //
Goal: visit every node of a tree A X *
In-order traversal / A\ /\
/ 2 D 5
/\
void Node::inOrder () { C >

if (left 1= NULL) {
cout << “("; left->inOrder(); cout << ™)":

}

cout << data << endl;

if (right '= NULL) right->inOrder()
Odutput: A—-C/5*2+D*5% 4
To disambiguate: print brackets

TREE TRAVERSAL (CONTD.)

pre-order and post-order:

void Node::preOrder () {

cout << data << endl;
left->preOrder ();
if (right '= NULL) right->preQOrder ();

if (left 1= NULL)

}

void Node::postOrder () {
left->preOrder ();
if (right '= NULL) right->preQOrder ();
cout << data << end|;

Qutput: AC5/2*-D5*4 % +

if (left 1= NULL)

}

- /
/\ /\
A X X 4
VANEERWA
/ 2 D 5
/\
C 5

Output: +-A*/C52%*D54

XMcJ:rta Representation

E.Q.
<dependency>
<object>samplel.o</object>
<depends>samplel.cpp</depends>
<depends>samplel.h</depends>
<rule>g++ -c samplel.cpp</rule>
</dependency>

Tree representation

dependency
object depends depends rule
' ' ' '

samplel.o samplel.cpp samplel.h g++-C ..\

GRAPH DATA STRUCTURES

E.g: Airline networks, road networks, electrical circuits
Nodes and Edges

E.g. representation: class Node
Stores name

stores pointers to all adjacent nodes
I,e. edge == pointer
To store multiple pointers: use array or linked list

Mumbai
Ahm’bad

Calcutta
Q\ O

Delhi

Madurai
Chennai

® EnD OF CHAPTER

