
 

 

 

TREE DATA STRUCTURES 



TREES DATA STRUCTURES 
 Tree 

 Nodes 

 Each node can have 0 or more children 

 A node can have at most one parent 

 Binary tree 

 Tree with 0–2 children per node 

Tree Binary Tree 



TREES 
 Terminology 

 Root  no parent 

 Leaf  no child 

 Interior  non-leaf 

 Height  distance from root to leaf 

Root node 

Leaf nodes 

Interior nodes Height 



BINARY SEARCH TREES 

 Key property 

 Value at node 

 Smaller values in left subtree 

 Larger values in right subtree 

 Example 

 X > Y 

 X < Z 

Y 

X 

Z 



BINARY SEARCH TREES 
 Examples 
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BINARY TREE IMPLEMENTATION 

Class Node { 

 int data; // Could be int, a class, etc 

 Node *left, *right;  // null if empty  

 

 void insert ( int data ) { … } 

 void delete ( int data ) { … } 

 Node *find ( int data ) { … } 

  … 

} 



ITERATIVE SEARCH OF BINARY TREE 
Node *Find( Node *n, int key) {  

 while (n != NULL) { 

       if (n->data == key)   // Found it 

      return n; 

  if (n->data > key)     // In left subtree 

      n = n->left; 

  else                        // In right subtree 

      n = n->right; 

      }  

 return null; 

} 

Node * n = Find( root, 5); 



RECURSIVE SEARCH OF BINARY TREE 

Node *Find( Node *n, int key) { 

 if (n == NULL)   // Not found 

  return( n ); 

 else if (n->data == key)  // Found it 

  return( n ); 

 else if (n->data > key)  // In left subtree 

  return Find( n->left, key ); 

 else     // In right subtree 

  return Find( n->right, key ); 

} 

Node * n = Find( root, 5); 



EXAMPLE BINARY SEARCHES 
 Find ( root, 2 ) 
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EXAMPLE BINARY SEARCHES 
 Find (root, 25 ) 
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10 < 25, right 

30 > 25, left 

25 = 25, found 

5 < 25, right 

45 > 25, left 

30 > 25, left 

10 < 25, right 

25 = 25, found 



TYPES OF BINARY TREES 
Degenerate – only one child 

Complete – always two children 

Balanced – “mostly” two children  

 more formal definitions exist, above are intuitive ideas 
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BINARY TREES PROPERTIES 
Degenerate 

 Height = O(n) for n 

nodes 

 Similar to linked list 

Balanced 

 Height = O( log(n) ) 

for n nodes 

 Useful for searches 

Degenerate 

binary tree 

Balanced 

binary tree 



BINARY SEARCH PROPERTIES 

 Time of search 

 Proportional to height of tree 

 Balanced binary tree 

 O( log(n) ) time 

 Degenerate tree 

 O( n ) time 

 Like searching linked list / unsorted array 



BINARY SEARCH TREE CONSTRUCTION 

 How to build & maintain binary trees? 

 Insertion 

 Deletion 

 Maintain key property (invariant) 

 Smaller values in left subtree 

 Larger values in right subtree 



BINARY SEARCH TREE – INSERTION 

 Algorithm 

1. Perform search for value X 

2. Search will end at node Y (if X not in tree) 

3. If X < Y, insert new leaf X as new left subtree for Y 

4. If X > Y, insert new leaf X as new right subtree for Y 

 Observations 

 O( log(n) ) operation for balanced tree 

 Insertions may unbalance tree 



EXAMPLE INSERTION 

 Insert ( 20 ) 
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BINARY SEARCH TREE – DELETION 

 Algorithm  

1. Perform search for value X 

2. If X is a leaf, delete X 

3. Else  // must delete internal node 
a) Replace with largest value Y on left subtree 

                     OR smallest value Z on right subtree 

b) Delete replacement value (Y or Z) from subtree 

Observation 

 O( log(n) ) operation for balanced tree 

 Deletions may unbalance tree 



EXAMPLE DELETION (LEAF) 

 Delete ( 25 ) 
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EXAMPLE DELETION (INTERNAL NODE) 

 Delete ( 10 ) 
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EXAMPLE DELETION (INTERNAL NODE) 

 Delete ( 10 ) 
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BALANCED SEARCH TREES 

 Kinds of balanced binary search trees 
 height balanced vs. weight balanced 

 “Tree rotations” used to maintain balance on 
insert/delete 

Non-binary search trees 
 2/3 trees 

 each internal node has 2 or 3 children 

 all leaves at same depth (height balanced) 

 B-trees  

Generalization of 2/3 trees 

Each internal node has between k/2 and k children 

 Each node has an array of pointers to children 

Widely used in databases 



OTHER (NON-SEARCH) TREES 

 Parse trees 

 Convert from textual representation to tree 
representation 

 Textual program to tree 
 Used extensively in compilers 

 Tree representation of data 
 E.g. HTML data can be represented as a tree 

 called DOM (Document Object Model) tree 

 XML 

 Like HTML, but used to represent data 

 Tree structured 



PARSE TREES 
 Expressions, programs, etc can be represented by tree 

structures 

 E.g. Arithmetic Expression Tree 

 A-(C/5 * 2) + (D*5 % 4) 

              + 
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TREE TRAVERSAL 

 Goal: visit every node of a tree 

 in-order traversal 

void Node::inOrder () { 
    if (left != NULL)  { 
       cout << “(“;  left->inOrder(); cout << “)”; 
    } 
    cout << data << endl; 
    if (right != NULL) right->inOrder() 
} Output:  A – C / 5 * 2 + D * 5 % 4 

To disambiguate: print brackets 
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TREE TRAVERSAL (CONTD.) 

 pre-order and post-order: 

void Node::preOrder () { 
    cout << data << endl; 
    if (left != NULL)   left->preOrder (); 
    if (right != NULL) right->preOrder (); 
} 

void Node::postOrder () { 
    if (left != NULL)   left->preOrder (); 
    if (right != NULL) right->preOrder (); 
    cout << data << endl; 
} 

Output:  + - A * / C 5 2 % * D 5 4 

Output:  A C 5 / 2 * - D 5 * 4 % + 
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XML 
Data Representation 

 E.g. 

   <dependency> 

       <object>sample1.o</object> 

       <depends>sample1.cpp</depends> 

       <depends>sample1.h</depends> 

       <rule>g++ -c sample1.cpp</rule> 

   </dependency> 

 Tree representation 

dependency 

object depends 

sample1.o sample1.cpp 

depends 

sample1.h 

rule 

g++ -c … 



GRAPH DATA STRUCTURES 
 E.g: Airline networks, road networks, electrical circuits 

 Nodes and Edges 

 E.g. representation: class Node 
 Stores name 

 stores pointers to all adjacent nodes  

 i,e. edge == pointer 

 To store multiple pointers:  use array or linked list 
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END OF CHAPTER 


